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Abstract

The representative elementary watershed (REW) approach proposed by Reggiani et
al. (1998, 1999) represents an attempt to develop a scale adaptable modeling frame-
work for the hydrological research community. Tian et al. (2006a) extended the original
REW theory for cold regions through explicit treatment of energy balance equations to5

incorporate associated cold regions processes, such as melting and accumulation of
glacier and snow, and freezing and thawing of soil ice. However, constitutive relation-
ships for the cold regions processes needed to complete these new balance equations
have been left unspecified in this derivation. In this paper we propose a set of closure
scheme for cold regions processes within the extended framework provided by Tian10

et al. (2006a). A rigorous energy balance method is proposed to close the balance
equations of melting/accumulation processes as well as the widely-used and concep-
tual degree-day method, whereas the closure schemes for soil freezing and thawing
are based on the “maximum unfrozen-water content” model. The proposed closure
schemes are coupled to the previously derived balance equations and implemented15

within Thermodynamic Watershed Hydrological Model (THModel, Tian, 2006b) and
then applied to the headwaters of the Urumqi River in Western China. The results of
the 4-year calibration and 1-year validation analyses show that THModel can indeed
simulate runoff processes in this snow and glacier-dominated catchment very well,
which confirms the applicability of the modeling based on the REW approach and the20

validity of the developed closure schemes for cold regions processes.

1 Introduction

Prediction of hydrological responses at the catchment scale in a changing environment,
such as due to natural and human induced climate and landscape changes, is a grand
challenge in the hydrological sciences, and is of crucial importance for sustainable wa-25

ter management and hazard mitigation. The current generation of physically based,
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distributed hydrological models for the upscaling of point-scale balance equations, as
set out by Freeze and Harlan (1969), have the drawback that there is no a priori percep-
tion about how the micro-scale processes interact with each other (Sivapalan, 2003a)
and therefore cannot account for the self-organized features that emerge at the macro-
scale, i.e., catchment scale, as a result of these interactions (McDonnell et al., 2007).5

One of the most obvious emergent features frequently recognized in the literature is
preferential flow which results from the interactions of subsurface flow, soil and biota,
and cannot be easily handled using traditional micro-scale process descriptions. Mod-
els such as SHE (Abbott et al., 1986), THIHMS-SW (Ni et al., 2007), among many
others, are often criticized for their excessive complexity and parameter identifiability in10

comparison with limited data availability and excessive computational demands.
The Representative Elementary Watershed (REW) approach first proposed by Reg-

giani et al. (1998, 1999) provides a general framework to incorporate all possible emer-
gent behaviors of the hydrological system parameterized directly at the catchment
scale. It invokes mass, momentum, and energy conservation equations and entropy15

constraints directly at the scale of the so called representative elementary watersheds
(REWs), which are by themselves macro-scale discrete units. By coupling appropri-
ate closure relationships to these balance equations to make the system of governing
equations determinate, the REW approach has the potential to represent the net ef-
fects of the spatial and temporal heterogeneity of micro-scale processes (Lee et al.,20

2007), including the effects of self-organizing features that emerge at the macro-scale
without any conceptual jump or inconsistency. For these reasons we argue, as do
Reggiani and Schellekens (2003) and Reggiani and Rientjes (2005), that the REW
approach can serve as an alternative blueprint compared to the classical Freeze and
Harlan (1969) blueprint, providing a key building block to a general modeling framework25

when combined with the alternative downward approach to modeling (Sivapalan et al.,
2003b).

As mentioned before, the set of balance equations arising from the REW approach,
on their own, are indeterminate, i.e., they have more unknowns than equations. In
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other words, the states of the system and the flux exchanges cannot be determined
just through the use of the conservative principles quite common in continuum me-
chanics. They have to be supplemented by additional equations, including geometric
and constitutive relationships, to make the final set of balance equations determinate
(Tian et al., 2006a). This issue is usually called the closure problem (Zhang et al.,5

2005b) which lies at the heart of the REW approach, as pointed out by Beven (2002,
2006). In the original work of Reggiani et al. (1998, 1999), each REW is divided into
five sub-regions (zones), i.e., an unsaturated zone (u-zone), a saturated zone (s-zone),
a concentrated overland flow zone (c-zone), a saturated overland flow zone (o-zone),
and the main channel reach (r-zone). Remaining within this system definition, several10

researchers have proposed different closure schemes and have applied them to hy-
pothetical and real watersheds. Reggiani and Rientjes (2005) developed a model in
which constitutive relationships were deduced by using the Coleman-Noll procedure
(Coleman and Noll, 1963) and the Hardy Cross method (Cross, 1936). Reggiani et
al. (2000, 2001) subsequently demonstrated the applicability of the REW approach15

and the corresponding closure schemes in hypothetical and real watersheds (Reggiani
and Rientjes, 2005). Zhang et al. (2005b) introduced an interception component and
developed a multi-layer soil column definition for the REW formulation, and applied the
resulting REWASH model to Geer (2005a), Alzette (2006), Zwalm (Taibi et al., 2006)
watersheds in Europe. Lee et al. (2007) and Tian (2007) surveyed the variety of meth-20

ods in use for developing the constitutive relationships, and classified them into two
primary types, namely, the experimental method and the statistical method. Of these,
the former is based on direct regression analysis of laboratory and/or field experimental
results, and the latter is based on the upscaling of micro-scale process understanding
to the macro-scale, similar to statistical mechanics. With the help of the fully physically25

based, distributed hydrological model, CATFLOW (Zehe et al., 2001), Lee et al. (2007)
proposed a closure scheme that was different from Reggiani and Rientjes (2005) and
Taibi et al. (2006), by explicitly considering spatial heterogeneity of soil properties. Tian
(2006b) obtained similar results by coupling the Monte Carlo simulation approach and
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the 1-D Richards’ equation. On the basis of the closure relations developed through
up-scaling of the CATFLOW model, Lee et al. (2005) developed the CREW model and
applied it to the Weiherbach watershed in Germany and Susannah Brook watershed in
Australia.

Despite all this progress, the original REW approach as set out by Reggiani et al.5

(1998, 1999) cannot fully account for energy related processes, especially in cold re-
gions which exhibit a complex hydrological regime. In fact, cold regions cover nearly
half of the global land area (Yang et al., 2000), at least during the cold season, and the
water that melts from glaciers and the snowpack account for a significant component
of daily water supply in cold regions (McManamon et al., 1993; Williams and Tarboton,10

1999). Hydrological processes in cold regions are strongly influenced by energy stor-
age and transfer processes, which, so far, cannot be represented within Reggiani et
al. (1998, 1999) original formulation of the REW approach. By re-defining the structure
and composition of the REW, Tian et al. (2006a) have extended the Representative El-
ementary Watershed approach for cold regions. In their revised formulation, each REW15

is partitioned into six surface sub-regions and two subsurface sub-regions. Vegetation,
snow, soil ice, and glacier ice are added to the existing system that included water, gas,
and soil matrix. As a result, energy related processes i.e., evaporation/transpiration,
accumulation and depletion of snowpack and glacier, and the freezing and thawing of
soil ice, can be modeled in a physically reasonable way. The Thermodynamic Hydro-20

logical Model (THModel) has been developed by adopting Lee et al.’s (2007) closure
scheme within this new extended REW formulation and applied to the semi-arid exper-
imental watershed (Chabagou River basin) in China with good results (Tian, 2006b;
Tian et al., 2007). However, up till now the closure schemes incorporated in the model
completely exclude the energy balance equations and constitutive relationships appro-25

priate for cold regions processes have not been developed within the REW framework.
This paper will serve as a companion paper to Tian et al. (2006a) and aims to develop
parsimonious parameterizations for the melting and accumulation of glacier and snow,
freezing and thawing of soil ice by taking full advantage of energy balance equations,
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and to demonstrate the capability of a generalized cold regions REW-based model for
long-term streamflow modeling in high mountainous cold regions.

The remainder of this paper is organized as follows. In Sect. 2 we give a brief
review of the balance equations, along with a few necessary but minor revisions and
existing closure relationships for non-cold regions, as present in the existing THModel.5

Following this, in Sect. 3, we will propose appropriate constitutive relationships for the
glacier zone, snow covered zone, and soil ice within the unsaturated zone, which will
make the coupled balance equations fully determinate. This will be followed up, in
Sect. 4, by a case study involving the application of the new THModel to a headwater
catchment of the Urumqi River Basin located in northwest of China, and a discussion10

of the results of model application. This will be followed, in Sect. 5, by a summary of
the main results and conclusions.

2 Brief review of THModel

In the THModel (Tian et al., 2006a, 2007), the REW is divided into surface layer and
subsurface layer (see Fig. 1). Six sub-regions (or zones) are defined in the surface15

layer, i.e., a bare soil zone (b-zone), vegetated zone (v-zone), a snow covered zone (n-
zone), a glacier covered zone (g-zone), a sub-stream-network (t-zone), and the main
channel reach (r-zone), while two sub-regions are defined in the sub-surface layer,
i.e., an unsaturated zone (u-zone) and a saturated zone (s-zone). The ice phase is
introduced into both the u-zone and s-zone to allow soil freezing and thawing to be20

modeled.
The mass, momentum, energy balance equations for each zone are derived in a

systematic and extensible way by Tian et al. (2006a). In the interest of consistence, we
will here list the special balance equations for cold regions including the equations for
g-zone, n-zone, and u-zone, and make some minor revisions on them for later use. In25

frozen areas the saturated zone is considered to be beneath the frozen soil layer and
mass exchange rate between s-zone and other sub-regions is rather slow (Lin, 1980).
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As a first attempt, the balance equations for s-zone are, therefore, ignored in this paper.
Also, we will here list the closure relationships for the constitutive variables related with
non-cold processes. For details about the balance equations for other sub-regions
and the established closure relationships please refer to Tian et al. (2006a, 2007), and
about the symbols in the following equations please refer to the nomenclature.5

2.1 Balance equations for the glacier zone

(1) Mass balance equation for water

egTl + egul + egtl + eglg + e
g
l i = 0 (1)

where the terms on the l.h.s. account for the intensity of rainfall, infiltration or exfiltra-
tion, runoff, evaporation, and melting or freezing, respectively.
(2) Mass balance equation for ice

d
dt

(ρgi y
gωg) = egTi + egig + e

g
il (2)

where the l.h.s term accounts for the rate of change of the glacier ice storage, and the
terms on the r.h.s. represent the intensity of snowfall, and the rates of sublimation and10

freezing, respectively.
Snowfall and rainfall often occur simultaneously and therefore cannot be easily sep-

arated. Also, we cannot easily calculate evaporation and sublimation separately. We
therefore combine Eqs. (1) and (2) together, which yields

d
dt

(ρgi y
gωg) = egTl + egTi + egul + egtl + eglg + e

g
ig (3)

The water exchange between g-zone and u-zone (egul ) is usually small and can be

omitted, and for the reason of simplicity, we use a new symbol, egT , to donate total
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precipitation, egTl +egTi , and combine two phase transition terms, i.e., ice melting (eglg)

and sublimation (egig), into a single term eg(l ,i )g , which is usually called glacier surface

evaporation and denoted by eglg. Therefore, the mass balance equation for the whole
glacier zone can be re-written as follows:

d
dt

(ρgi y
gωg) = egT + egtl + eglg (4)

(3) Heat balance equation for the glacier zone

ygωgcg
d
dt
T g=llge

g
lg+lige

g
ig+li le

g
il+R

g
nω

g+QgT+Qgu+Qgt“ 1 (5)

where the l.h.s. term represents the rate of change of heat storage, the terms on the
r.h.s. are the rate of latent heat of vaporization, sublimation, and fusion, net radiation
intensity, and rates of heat exchange with the atmosphere, u-zone, and t-zone, respec-
tively.5

Following the assumption made previously that egul in Eq. (3) is usually small and
can be neglected, the term Qgu can be similarly omitted. Similarly, the two latent heat
terms, i.e., llge

g
lg and lige

g
ig, are combined into a single term donated by l ′lge

g
lg, where

eglg is the glacier surface evaporation and l ′lg will be defined later in Sect. 3.1. With
these assumptions, the heat balance equation (Eq. 5) can be simplified as follows:

ygωgcg
d
dt
T g = l ′lge

g
lg + li le

g
il + R

g
nω

g +QgT +Qgt (6)

1In this paper we use T to denote the temperature other than θ in Tian et al. (2006a) (not to
be confused with the vector symbol T to denote the momentum term).
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2.2 Balance equations for the snow zone

(1) Mass balance equation for water phase

d
dt

(ρnl ε
n
l y

nωn) = enTl + enul + entl + enlg + e
n
ln (7)

where the l.h.s. represents the rate of change of water storage, the terms on the
r.h.s. represent the intensity of rainfall, rate of water exchange with the u-zone, with
the t-zone, with the vapor phase (i.e., evaporation), and with the snow phase (i.e. melt-
ing), respectively.5

(2) Mass balance equation for snow phase

d
dt

(ρnnε
n
ny

nωn) = enTn + enng + e
n
nl (8)

where the l.h.s. term is the rate of change of snow storage, the terms on the r.h.s. rep-
resent the intensity of snowfall, rate of snow exchange with the vapor phase (i.e., sub-
limation) and with the water phase (i.e. melting).

Very similar to the g-zone, we can obtain the combined mass balance equation for
the snow zone as follows:
d
dt

(ρnynωn) = enT + enul + entl + enlg (9)

where the l.h.s. term represents the change rate of total mass including snow and
water in the n-zone, ρn is the average density of snow and water in snow-pack, yn is10

the equivalent depth of the n-zone, and ωn is the area fraction of the n-zone, enT is
total precipitation, i.e., enTl +enTn , and the the last term on the r.h.s. is the combination
of enlg and enln in Eq. (6), which is denoted by enlg. The meaning of other symbols is
similar to those of Eqs. (6) and (7).
(3) Heat balance equation for the snow zone

ynωncn
d
dt
T n = llge

n
lg + lnge

n
ng + lnle

n
nl + R

n
nω

n +QnT +Qnu +Qnt (10)
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where, the term on the l.h.s. is the rate of change of heat storage, the first three terms
on the r.h.s. represent the rate of latent heat transfer of vaporization, of sublimation,
and of fusion, respectively, and the remaining terms on the r.h.s. represent the net
radiant intensity, heat exchange rate with the atmosphere, with the u-zone, and with
t-zone, respectively.5

2.3 Balance equations for unsaturated zone

(1) Mass balance equation for water

d
dt

(
ρul ε

u
l y

uωu
)
= euEXTl +

NK∑
L=1

euLl + eusl + eubl + euvl + eunl + eugl + eul i (11)

where the l.h.s. term is the rate of change of water storage, and the terms on the
r.h.s. are various water exchange terms with the external world, neighboring REWs,
s-zone, b-zone, v-zone, n-zone, g-zone, and ice phase, respectively.
(2) Mass balance equation for ice

d
dt

(
ρui ε

u
i y

uωu
)
= euil = −eul i (12)

(3) Heat balance equation for u-zone

ωuyucu
d
dt
T u = Qub +Quv +Qun +Qug +Qus + li le

u
il (13)

where the l.h.s. term represents the change rate of heat storage, the terms on the10

r.h.s. account for REW-scale heat exchange rate with b-zone, v-zone, n-zone, g-zone,
and s-zone, and the rate of freezing heat, respectively.

As shown in Eq. (11), the exchange terms between u-zone and its environment and
among different phases are highly complex. To confine the problem to a manageable
level, we assume that (a) the depth and area ratio of u-zone are constant in the frozen
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areas, (b) water exchange terms with neighboring REWs or the external world are neg-
ligible, (c) water exchange term with the g-zone is negligible as suggested in Sect. 2.1,
and (d) water exchange terms with s-zone are negligible when ice coexisting with wa-
ter limits water movement in the u-zone, as suggested at the beginning of this section.
Also, we provide here an alternative simpler way to account for the saturation excess

runoff by introducing the mass exchange term from the u-zone to the t-zone
(
eutl
)

in-

stead of changing the area of the t-zone as done in Tian et al. (2007), which will be
discussed more in Sect. 3.3. Given the above assumptions, we obtain the following
equations after adding Eqs. (11) and (12) together:

ρly
uωu

d
dt

(
εul
)
= eubl + euvl + eunl + eutl − ρiyuωu

d
dt

(
εui
)

(14)

where ρl and ρi are the mass density of water and ice, respectively.
Similarly, the heat balance equation can also be rewritten as

ωuyucu
d
dt
T u = Qub +Quv +Qun +Qut + li lρiy

uωu
d
dt

(
εui
)

(15)

2.4 Constitutive relationships for non-cold region hydrological processeone

Tian et al. (2007) closed the resulting set of ordinary differential equations (ODEs) by
adopting Lee et al.’s (2007) closure scheme for non-cold region hydrological processes
within the framework of extended REW approach. The principal closure formulae are5

listed in Table 1. The special constitutive relationships for the energy related processes
will be developed in Sect. 3 below.

2.5 Numerical implementation of THModel

The final result of ODEs in THModel is more easily numerically solved than partial
differential equations (PDEs) on which the current generation of physical hydrological10
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models are based. The numerical part of THModel is implemented with the help of a
famous ODE solver, CVODE (Cohen and Hindmarsh, 1996), within which the iterative
formula of ODEs is based on the Backward Differentiation Formulas (BDE) coupled with
Newtonian Iteration for nonlinear equations and the preconditioned GMRES algorithm
for linear equations.5

3 Constitutive relationships for the energy related processes in cold regions

Special processes in cold regions can be classified into two types. One is the melting
and accumulation of glacier and snow, which may contribute to annual or seasonal
runoff and hence greatly influence the overall water balance, and the others are the
freezing and thawing of soil water which may alter soil properties and hence dramati-10

cally influence water and energy transfers in unsaturated zone. Both of them are driven
by relevant energy processes, which are primarily heat processes. These contribute
to the intimate and complex coupling between water and heat transfer and storage
processes.

Generally speaking, both snow and glacier melting processes are subject to similar15

driving forces, i.e., the solar radiation and sensible heat flux. We can close the balance
equations of the g-zone and n-zone by explicitly considering the energy transfer pro-
cesses in a rigorous manner, which is called energy balance method in this paper (see
Sect. 3.1 below). It is, however, always difficult in practice to apply the energy balance
method to model snow melt for long-term, large-scale applications owing to the large20

heterogeneity of snow distribution in space and time, the complex structure of snow-
pack and limited data in cold, remote regions. A simpler method using the widely-used
degree-day formula is, therefore, then introduced to provide an alternative approach to
close the n-zone balance equations (see Sect. 3.2 below).

Mass and energy exchange terms among different sub-regions are illustrated in25

Fig. 2 and the detailed one for the n-zone is shown in Fig. 3.
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3.1 Energy balance method for closing glacier/snow melting and accumulation equa-
tion

Mass and energy terms are intimately coupled during glacier/snow melting and ac-
cumulation processes, which can be clearly seen from the mass balance equations,
Eqs. (4) and (9) for g-zone and n-zone respectively, and the corresponding heat bal-5

ance equations, Eqs. (6) and (10), respectively. In order to close the balance equations,
we must specify all the redundant unknowns in a physically reasonably way. In the in-
terest of simplicity, we will take the g-zone as an example in the following section while
the same method can be applied to the n-zone without too many changes.

For the balance equations in the g-zone, i.e., Eqs. (4) and (6), we take the variables10 (
yg, T g

)
as independent unknowns, and assume that the g-zone area variation (ωg) is

rather small and hence can be ignored over hydrological time scales. The dependent

unknowns are therefore
(
egT , egtl , e

g
lg, e

g
il , Rn, Q

gT , Qgt
)

, which can be specified in

terms of driving forces (i.e., observations) or through appropriate closure relationships.
15

(1) Precipitation (egT )

egT may be either rainfall or snowfall depending on a certain critical temperature
which can be given by experimental data or by calibration.

20

(2) Areal average net radiation intensity (Rgn )

The net radiation varies with extraterrestrial radiation, sunshine duration and terrain
features in the watershed. The areal average net radiation can be estimated by GIS
software (Lalit et al., 1997). For simplicity, we calculate using Eq. (16) as follows:

Rgn = Rgnc
g
rn (16)
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where Rgn is the local net radiation intensity absorbed at a representative position with
mean elevation, slope and aspect in the g-zone. cgrn is a coefficient which incorporates
the influence of terrain factors including slope, aspect, and hill-shade on solar radiation
as well as the spatial heterogeneity within the REW. Rgn is affected by both surface solar
radiation and long-wave radiation released from the ground, which can be calculated
as follows.

Rgn = cn
(
Rgs ×

(
1 − αg

)
− Rgnl

)
(17)

where Rgs is the local surface solar radiation (MJm−2day−1), and Rgnl is local net long-

wave radiation (MJm−2day−1), αg is the albedo of the glacier, cn is the coefficient of
unit transformation from (MJm−2day−1) to (kWm−2).

The surface solar radiation is determined by the extraterrestrial radiation, sunshine
duration, and also the geographic location. The formula recommended by Shuttleworth
(1993) and Allen et al. (1998) is adopted in this paper as follows:

Rgs =
(
as + bs

nsun

Nsun

)
Ra (18)

Ra = 37.586dr (ωs sinϕ sinδ + cosϕ cosδ sinωs) (19)

where Ra is the daily extraterrestrial radiation (MJm−2day−1), nsun is the actual dura-
tion of sunshine (hour), Nsun is the maximum possible duration of sunshine or daylight5

hours (hour), as is a regression constant indicating the fraction of extraterrestrial radia-
tion reaching the earth on overcast days, i.e., nsun=0, as+bs is the fraction of extrater-
restrial radiation reaching the earth on a clear day, i.e., nsun=Nsun, dr is the inverse
relative distance Earth-Sun, ωs is the sunset hour angle, ϕ is the latitude, δ is the
solar declination,10

3640

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/3627/2007/hessd-4-3627-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/3627/2007/hessd-4-3627-2007-discussion.html
http://www.egu.eu


HESSD
4, 3627–3686, 2007

Application of the
REW approach for

cold regions

L. Mou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

The albedo αg depends on the characteristics of glacier surface including wetness,
grain size, snow age, snow depth, and snow density (Anderson, 1976), although a good
relationship between α and daily air temperature can be found. For example, Kang et
al. (1992) proposed the following empirical formulae to estimate daily averaged albedo
on the basis of observed air temperature in the headwaters of the Urumqi River, which5

will be adopted in our case study (Sect. 4).
Snow surface albedo:

αsnow = 0.82 − 0.03Ta − 1.74 × 10−3T 2
a − 1.14 × 10−4T 3

a (20)

Glacier surface albedo:

αice = 0.27 − 0.01Ta (21)

where Ta is the daily mean air temperature (◦C). When it snows the glacier is covered
with snow and Eq. (20) can be used to calculate αg. Otherwise, due to the existence
of snow in the accumulation zone of the glacier, average albedo should be weighted
according to the snow cover ratio of glacier surface εgn, which could be estimated by10

experience or calibration.
The long-wave radiation Rgnl depends on ground surface characteristics, air water

vapor, clouds, carbon dioxide, and dust condition, and can be estimated as follows
(Shuttleworth, 1993; Allen et al., 1998):

Rgnl = σ

(
T 4
a,max + T

4
a,min

2

)(
0.34 − 0.044

√
ea
)(

1.35
Rgs

Rgso
− 0.35

)
(22)

where Rgnl is net outgoing long-wave radiation (MJm−2day−1), σ is Stefan-Boltzmann

constant, i.e., 4.903×10−9(MJK−4m−2day−1), Ta,max is the daily maximum absolute
temperature (K), Ta,min is the daily minimum absolute temperature (K), ea is the actual
vapor pressure (kPa), Rgs is the solar radiation (MJm−2day−1), and Rgso is clear-sky15
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radiation (MJm−2day−1).

(3) Heat exchange rate with atmosphere (QgT )

QgT can be divided into two components. One is the energy flux associated with

rainfall or snowfall which is denoted by Q
gT

1 , the other is the sensible heat flux caused

by turbulent air motions above the glacier surface, which is denoted by Q
gT

2 . This is
slightly different from Tian et al. (2006a), which includes only the latter term.

Q
gT

1 =


(
cpl
/
ρl
)
·
(
Ta − T g

)
· e

gT

l for rainfall(
cpi
/
ρi
)
·
(
Ta − T g

)
· e

gT

i for snowfall
(23)

QgT2 = ωgcpaD
g
h

(
Ta − T gs

)
(24)

where cpl ,cpi ,cpa are, respectively, the specific heats of water, ice and air at con-

stant pressure (kJ/(m3·K)); ρl ,ρi ,ρa are, respectively, the density of water, ice, and air
(kg/m3); Ta is air temperature (oC); T gs is the glacier surface temperature, which can be
replaced by Tg. Dgh is the turbulent transfer coefficient estimated using Eqs. (24)–(28)
below (Price and Dunne, 1976):

Dghn = κ
2u
/[

ln
(
(z′ − Z − d )

/
z0
)]2, for neutral condition (25)

Dghs = D
g
hn

/(
1 + 10Rgi

)
, for stable condition (26)

Dghu = D
g
hn

(
1 − 10Rgi

)
, for unstable condition (27)
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R=
i g (z′ − Z − d ) ·

(
Ta − T gs

)
u2

· 1
(Ta + 273.15)

(28)

where Dghn,D
g
hs, D

g
hu are the turbulent transfer coefficient under neutral conditions,

stable conditions, and unstable conditions, respectively, κ is von Karman’s constant
(≈0.40), u is wind speed (m/s) (measured at height z′ (m)), Z is depth of glacier and
its covers above ground surface (m), d is the zero plane displacement height (m),
z0 is the aerodynamic roughness height over the glacier surface (m), and Ri is the5

Richardson number.

(4) Glacier surface evaporation (eglg) and related latent heat flux (l ′lge
g
lg)

eglg is the combined phase transition term either by evaporation from water or subli-
mation from ice, which will contribute to the latent heat flux across the glacier surface.
Usually it is hard to distinguish between evaporation and sublimation and therefore they
can be calculated together.

eglg = ωgρaD
g
h

[
qsT gs − qa

]
(29)

l ′lg = llg + lig −
(
cpi
/
ρi
)
· T gs (30)

where qs is the saturation specific humidity of the glacier surface at T gs which is re-10

placed by Tg, qa is the specific humidity of atmosphere (kg kg−1), llg and lig are the
latent heats of vaporization and sublimation, respectively (kJ/kg), cpi is the specific

heat of ice at constant pressure (kJ/m3 K), and ρa andρi are the densities of air and ice
(kg/m3), respectively; the meanings of other symbols are similar to those of Eq. (24).
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It should be noted that the above equations for sensible and latent heat flux are
point-scale and are subject to the effects of spatial heterogeneity due to the spatial
variability of temperature, wind speed, glacier depth. In the interest of simplicity, areal
averaged sensible and latent heat flux are replaced by the ones at mean elevation
of watershed multiplied by coefficients cgT2 and cglg, respectively, which is similar to5

Eq. (16). More sophisticated schemes explicitly accounting for the effects of the actual
heterogeneity present could be adopted or developed; this is left for future research.

(5) Melting (egil )
10

When the total energy supply exceeds the negative heat storage of the g-zone, i.e.,

llge
g
lg+lige

g
ig+R

g
nω

g+QgT>ygωgcpi
(

0−T g
)

, glacier melting will occur and the temper-

ature of g-zone will be kept at zero, i.e., T g ≡ 0◦C. We thus obtain the following
equation:

−li le
g
il −Q

gt = max
(
l ′lge

g
lg + R

g
nω

g +QgT ,0
)

(31)

(6) Runoff generation (egt) and the accompanying heat flux (Qgt)

egt is the water transportation rate from glacier to sub-stream network zone , i.e.,
runoff. The water storage capacity in the g-zone is ignored and all the melted water is
assumed to flow into the t-zone directly.

egtl = egl i + e
gT
l (32)

Qgt =
(
cpl
/
ρl
)
· (T t − T g) · egtl (33)
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where T t is the temperature of the t-zone; the meanings of other symbols are similar
to those of Eq. (23).

3.2 Degree-day method for closing snow melting and accumulation equations

The energy balance methods discussed in Sect. 3.1 for the g-zone can also be ap-
plied to the n-zone without too many changes. The two exceptions are (a) the net5

solar radiation is different for diverse albedo of the snow surface, and (b) the infiltration
of snowmelt water into the u-zone cannot be neglected. However, the data required
for this method is not easy to collect, especially in remote regions, due to the broad
extension and spatial heterogeneity of snow pack. We therefore propose a more parsi-
monious approach to close the snow balance equations based on the widely-used but10

conceptual degree-day method (Finsterwalder and Schunk, 1887). Using the degree-
day method we can omit the heat balance equation, and consequently the only inde-

pendent unknown is
(
yn
)

and dependent unknowns are
(
ωn, enT , enul , e

nt
l , e

n
lg

)
.

Area fraction of snow zone (ωn)
ωn is the area ratio of snow covered zone which can be related to snow water equiv-

alent with the help of the snow cover depletion curve (Luce et al., 1999), which can be
expressed as follows:

ωn = f
(
Wa
/
Wa,max

)
(34)

where Wa is the snow water equivalent of the n-zoneand Wa,max is the maximum snow15

water equivalent of the n-zone.
The snow depletion curve embodies the snow cover change resulting from

snowmelt, and further influences the area of the remaining zones. Here we assume
the following principles: when the snow-pack expands, the areas of the b-zone, v-zone,
and t-zone will decrease in that order; conversely, when snow pack contracts, the20

areas of the three zones will increase in the reverse order. Moreover, the area of the
r-zone will keep constant whenever the n-zone expands and contracts. The specific
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shape of the curve can be determined by snow course observations or by empirical
formulae (Luce et al., 1999).

(1) Precipitation (enT )
5

We assume that snowfall occur over the n-zone and g-zone only. Mass input from
atmosphere to snow covered zone can be expressed by the following equation.

enT = enTl ×ωn + enTn ×
(
1 −ωn

)
(35)

(2) Snow surface evaporation (enlg)

enlg is the total evaporation rate from snow surface including evaporation and subli-
mation, which is calculated by the following formula:

enlg = cnlg × E0 ×ωn (36)

where E0 is the evaporation rate obtained from the evaporation pan, cnlg is the
coefficient of snow surface evaporation, which is assumed to be equal to 0.5, as
suggested by Lai and Ye (1991).10

(3) Infiltration (enul )

enul is the mass exchange rate between the n-zone and u-zone, i.e., infiltration. The
infiltration process is greatly influenced by soil properties such as soil moisture and
soil temperature. The experimental formula developed by Zhao and Gray (1997, 2001)
is adopted in this paper to estimate cumulative infiltration (INF ), which can then be
transformed into infiltration rate (enul ):

INF = cINF ×
(
Su0
)2.92 ×

(
1 − SuI

)1.64 ×

273.15 − T uK
273.15

−0.45

× t0.44
0 (37)
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where INF is the cumulative infiltration volume (mm), cINF is the coefficient accounting

for spatial heterogeneity, T uK is the initial soil temperature (K), t0 is the infiltration time
(hour), Su0 is soil surface saturationSuI is the initial moisture content including water and
ice for the frozen soil, which can be expressed as:

SuI =
(
εul + ε

u
i

)/
εu (38)

where εu is the soil porosity of u-zone.
Equation (36) is also applied to estimate the infiltration from the b-zone and v-zone.

The difference among different sub-regions lies in the soil surface saturation,Su0 , which
is the area ratio of the surface sub-region to u-zone. For example, for infiltration from
snow-pack to the u-zone, Su0 is defined as Snu0 =ωn

/
ωu, while for the v-zone and b-5

zone, the soil surface saturation should be Svu0 =ωv
/
ωu and Sbu0 =ωb

/
ωu, respectively.

(4) Snowmelt (ennl )

The degree-day equation first proposed by Finsterwalder and Schunk (1887) and
widely used is adopted for snowmelt modeling.

ennl = ω
n × anl × (Ta − T0)bnl (39)

where ωn is the area ratio of n-zone, anl and bnl are the coefficients of snow melting,10

T0 is the critical temperature (oC), and Ta is the daily mean temperature (◦C).

(5) Runoff generation (ent)

The residual term from snowmelt minus infiltration and evaporation will stay in the15

snowpack until it exceeds the liquid water-holding capacity, estimated from snow den-
sity. The density of new snow is proposed to decrease with temperature, while in the
case of old snow it is determined by overburden pressure (Anderson, 1976; Jordan,
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1991). Besides for short-term calculations, we should also estimate the infiltration rate
within the snowpack and the time taken by the melting water to travel through the
snowpack to reach the soil surface (Sun et al., 1999).

3.3 Soil freezing and thawing

In the balance equations for the u-zone, i.e., Eqs. (14) and (15), we take5

the variables
(
εul , ε

u
i , T

u
)

as independent unknowns, and assume the area of

the u-zone (ωu) to be constant. The dependent unknowns are, therefore,(
eubl , e

uv
l , e

un
l , e

ut
l , Q

ub, Quv , Qun, Qut
)

, which can be specified either in terms of driv-

ing forces (e.g., observation) or by appropriate closure relationships. However, the total
number of unknowns exceeds the number of available equations so we should bring in10

one more new equation.
Owing to the matric and osmotic potentials, unfrozen soil water is maintained in a

balanced state with ice. Assuming the existence of balance between water potential
and vapor pressure over pure ice surface, the maximum unfrozen-water content model
is applied to couple the mass and energy balance equations in the u-zone (Hu et al.,
1992, 2006).

εul = g(T u) = εu
[

ll iT u

T u + 273.16
+ cRT uK

]−1/B

(gψb)1/B (40)

where εu is the soil porosity of the u-zone, li l is the latent heat of melting per unit

volume (kJ/kg), T u and T uk are the averaged temperatures of the u-zone in ◦ and in K,
respectively, c is the density of solute in soil, (mol/kg), R is the universal gas constant
(8.3143J/mol/K), g is the gravitational acceleration (m/s2), ψb is the air entry value of15

the soil matrix potential (m), and B is the coefficient related to soil texture.
According to Eq. (40), the change of unfrozen water content with soil temperature

can be expressed as a function of soil temperature, i.e.,
dεul
dT u

=f (T u). As a result, the
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mass and heat balance Eqs. (14) and (15) can be deduced as follows:

ωuyucu ddtT
u = Qub +Quv +Qun +Qut + li lρiy

uωu ddt
(
εui
) Eq. (14)−−−−−→

ωuyucu ddtT
u = Qub +Quv +Qun +Qut + li l

(
eubl + euvl + eunl + eutl − ρly

uωu ddt
(
εul
))

dεul
dt =

dεul
dTu

dTu
dt =f (T u) dT

u
dt

−−−−−−−−−−−−−−−−→
ωuyucu ddtT

u=Qub+Quv+Qun+Qut+li l
(
eubl +euvl +eunl +eutl −ρly

uωu
(
f (T u)dT

u

dt

))
−→ ωuyucu ddtT

u=ωuyucu × Qub+Quv+Qun+Qut+li l (e
ub
l +euvl +eunl +eutl )

ωuyu[cu+li lρl×f (T u)]

(41)

dεul
dt =

dεul
dT u

dT u
dt = f (T u)dT

u

dt

Eq. (41)−→
×ρlyuωu

ρly
uωu

dεul
dt = ρly

uωuf (T u)
Qub+Quv+Qun+Qut+li l (e

ub
l +euvl +eunl +eutl )

ωuyu[cu+li lρl×f (T u)]

(42)

ρly
uωu ddt

(
εul
)
= eubl + euvl + eunl + eutl − ρiy

uωu ddt
(
εui
)

Eq. (42)−−−−−→ ρiy
uωu ddt

(
εui
)
=

eubl + euvl + eunl + eutl − ρly
uωuf (T u)

Qub+Quv+Qun+Qut+li l (e
ub
l +euvl +eunl +eutl )

ωuyu[cu+li lρl×f (T u)]

(43)

(1) Infiltration/exfiltration (euvl , eubl , and eunl )

From a hydrological point, euvl , eubl , eunl are infiltration or exfiltration terms between
the u-zone and the v-zone, b-zone, and n-zone, respectively, which can be calculated
using equations similar to Eqs. (37) and (38).
(2) Heat exchange rate above sub-regions (Quvl , Qubl , and Qunl )5
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Quvl , Q
ub
l , and Qunl are the heat exchanges between the u-zone and the v-zone,

b-zone, and n-zone, respectively, which include the heat fluxes associated with infiltra-
tion/exfiltration, and the heat conduction terms between them. Take vegetation zone
for example; the heat exchange rate is calculated by the following equation:

Quv = −Qvu = −
(
cpl
/
ρl
)
· evul ·

(
T u − T v

)
+ Duωv

(
T v − T u

)
·
(
0.5
(
yv + yu

))
(44)

where the first term on r.h.s. represents heat flux associated with mass exchange, the
second one accounts for heat conduction, cpl is the specific heat of water at con-

stant pressure (kJ/(m3·K)), and Du is the averaged coefficient of thermal conductivity
(kW/(m·K)).
(3) Runoff generation (eutl ) and the accompanying heat flux (Qutl )5

eutl is the saturation excess runoff which can be calculated as follows.

eutl =
{

0 εul + ε
u
i ≤ ε

u
c

∆w εul + ε
u
i > ε

u
c

where ∆w = −(euvl + eubl + eunl ) (45)

where εuc is the soil moisture at field capacity.
The accompanying heat flux can be calculated using:

Qut =
(
cul
/
ρul
)
· eutl · (T t − T u) (46)

4 Application to the headwaters of the Urumqi River

4.1 Study area: headwaters of the Urumqi River10

The development and testing of the constitutive relationships are performed at the
headwaters of the Urumqi River (see Fig. 4). The Urumqi River is located within the
Tianshan Mountain, in the north-west of China, and originates from Peak Tianger II,
located at an elevation of 4486 m, and flows northward to Urumqi City of China. The
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headwaters of the river are situated in a permafrost region, seasonally covered by
snow, and drain an area of 28.9 km2 with an average elevation of 3860 m. It contains 7
glaciers with a total area of 5.6 km2, of which the biggest one is No. 1 Glacier with an
area of 1.84 km2.

The headwaters of the Urumqi River are one of the most heavily instrumented and5

well studied experimental watersheds in the cold regions of China. There are 3 stream-
flow gauging stations, i.e., Total Control station (the outlet station), No. 1 Glacier sta-
tion, and Kongbingdou station, and 1 meteorological/ weather station named Daxigou
located at the elevation of 3539 m, and many other routine observations of glacier mass
and energy balance, glacier movement, and frozen hydrologic issues conducted over10

many years by different researchers (Yang et al., 2000; Shi et al., 2000).
Runoff in the Urumqi River is contributed from precipitation as well as glacier melt

and snowmelt. According to Daxigou meteorological station and the Total Control hy-
drological station, the mean annual precipitation is about 400mm, of which over 75%
happens during the summer season from May to August. Mean air temperature during15

the summer season is about 3oC which leads to melting of glacier and snow pack (see
Fig. 5 for the mean monthly precipitation and positive accumulated air temperature).
It is reported that runoff volume during the summer season comprised 90% of yearly
runoff volume (Yang and Han, 1994). Our case study will focus on the runoff modeling
during summer season.20

4.2 Data pre-processing

(1) Air temperature

Air temperature decreases with elevation at rate of −0.68◦/100 m in the headwaters
of the Urumqi River according to Ding et al. (1998). We transform the air temperature25

at Daxigou meteorological station to average air temperature at mean elevation of the
study area.
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(2) Ground surface temperature

The temperature of the t-zone, b-zone, and v-zone are assumed to be equal, and
denoted as ground surface temperature. The MODIS images of the watershed in
2002 are used to derive the relationship between daily mean air temperature and5

temperature difference between air and ground surface, as shown in Fig. 6. The
temperature measured by remote sensing image is always at some specific time,
e.g. 10:30 a.m. (local time) for the image shown in Fig. 6, which should be transformed
to the daily mean temperature with the help of a correspondence curve relating the
point value and the daily mean value.10

(3) Precipitation

The precipitation data cannot be used until error corrections are made for use in
mountainous regions (Yang et al., 1988). The type of precipitation depends on the air
temperature, which can be expressed as follows:
T ≥ T1 rain=P snow=0
T1 > T ≥ T2 rain=P × k1 snow=P × (1−k1)
T < T2 rain=0 snow=P

(47)

According to Kang and Ohmura (1994), the critical temperature T1, T2 for Daxigou
meteorological station are 5.5◦C and 2.8◦C, respectively. The temperature data is,15

however, the average one at mean elevation of the watershed as mentioned above,
and therefore both critical temperatures should be subjected to some calibration.
(4) Snow depletion curve

The snow cover depletion curve is expressed as (Luce and Tarboton, 2004):

ωn = F
(
Wa
/
Wa,max

)
(48)

where ωn is the area ratio of snow covered zone, Wa is snow water equivalent Wa,max
is the maximum snow water equivalent of the watershed, F is a function of the snow
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cover depletion curve, whose form also needs to be calibrated. Here we adopt the
snow cover depletion curve (see Eq. 49) obtained by Luce et al. (1999) in Upper
Sheep Creek, a sub-watershed of the Reynolds Creek Experimental Watershed in
south-western Idaho. The shape of the snow cover depletion curve is not as critical
in our case study due to the smaller influence of snow melt as compared to glacier
melt on runoff generation.

ωn =


0.18

√
Wa
/
Wa,max 0 ≤ Wa

/
Wa,max ≤0.13

0.42
√
Wa
/
Wa,max − 0.11 0.13 ≤ Wa

/
Wa,max ≤0.34(

Wa
/
Wa,max

)1.5
0.34 ≤ Wa

/
Wa,max ≤1

(49)

4.3 Model calibration

The Urumqi River is an ephemeral stream which runs dry from late September to the
following April. In this paper we focus on the runoff simulation from May to August only.
The 6-year period from 1990 to 1995 is chosen for model calibration and validation,
while excluding 1992 due to inadequate and abnormal data (See Fig. 7, for example,5

the discharge is quite different during the two days identified by two dotted lines, but
with similar air temperatures; the gauged streamflow increased when air temperature
decreased in the left circle, while the opposite trend happens in the right circle). The
calibration period is 1990–1994 excluding 1992, and the validation period is 1995. The
main climatic characteristics during the period of model application are listed in Table 2.10

In Sect. 3 we proposed two different closure schemes for g-zone and n-zone. In our
case study, the energy balance method (Sect. 3.1) is adopted for the g-zone and the
degree-day method (Sect. 3.2) is adopted for the n-zone. We use a single REW for
the whole study area (28.9 km2) while allowing the spatial heterogeneity inherent in the
various hydrological processes to be represented by the corresponding parameters in15

the closure relationships.
The geographic data such as drainage area, slope, channel length etc. are extracted
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from a DEM with 25 m×25 m resolution (Table 3). The main types of landscape are
glacier, snow, swamp, gravel desert, and high mountainous meadow. The soil types
underlying the study area include cold desert soils, alpine meadow soil and peat bog
soil (Kang et al., 1997).

The parameters subject to calibration are listed in Table 5. We represent the sea-5

sonal frozen layer with initial soil ice contents instead of layer depths. The initial soil ice
content of each year is determined by the mean daily maximum air temperature from
January to April (see Fig. 8). Three standard indices, i.e., Nash-Sutcliffe efficiency
coefficient, water balance index, and relative error, are selected to guide model
calibration, see Eqs. (50)–(52). The evaluation metrics and the calibrated results are10

shown in Table 6, and Figs. 9 to 13.

Nash-Sutcliffe efficiency coefficient:

R2 = 1 − S2

σ2
S =

√√√√√ n∑
i=1

(Qoi −Qsi )2

n
σ =

√√√√√ n∑
i=1

(Qoi −Qoi )2

n
(50)

Water balance index : IV F =
∑

Qsi/
∑

Qoi − 1 (51)

Relative error : RE =
1

nQoi

n∑
i=1

|Qoi −Qsi | (52)

where Qoi , Qsi are observed and simulated daily discharges, respectively, n is the total
number of time steps.

During the four year calibration period, we obtained an R2 value falling within15

0.64∼0.80, IV F within -0.12∼0.073, and RE within 0.24∼0.34. The highest R2 and
3654
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the lowest IV F and RE are obtained simultaneously in the dry and warm year (1990,
see Table 6 and Table 2). This may due to the fact that glacier melting is the dominant
process in the study area, which will be explained later. From Fig. 9 we can see that
the total runoff is influenced by water input as well as energy input, as indicated by air
temperature. When there is rainfall the discharge jumps quickly due to the small catch-5

ment area and hence short residence time, but when there is no significant rainfall the
hydrograph is mainly determined by the variation of air temperature and the discharge
increases or decreases not sharply but gradually. Figure 10 shows the correlation be-
tween observed discharge and the simulated one via a 1:1 straight line, and we can
see that there is no significant systematic deviation for different flow regimes, e.g. high10

flow regime and low flow regime. The daily water depths of snow and glacier melt-
ing and precipitation over the whole catchment are illustrated in Fig. 11, which shows
that the glacier melting is much more important than snowmelt and precipitation, espe-
cially after July. This should be attributable to the large area ratio covered by glacier in
the study catchment, as well as the warm weather condition during summer. Similarly,15

snow water equivalent experiences a dramatic drop and soil water content experiences
a steady increase after July, as demonstrated in Fig. 12 and Fig. 13, respectively. Fig-
ure 13 also demonstrates the decreasing trend of soil ice content during the melting
season and the roughly similar pattern of soil water and ice dynamics in different years.

4.4 Model validation20

Using the parameters obtained by calibration over the period 1990–1994, the model
is then validated for the year 1995. The results are shown in Table 6 and Fig. 14
from which similar conclusions can be drawn from the validation period as from the
calibration period (Sect. 4.3).

Sensitivity analysis of the model during calibration and validation periods shows that25

the water balance index (IV F ) is least sensitive at the daily time step and moderate
runoff while all three indices (R2, IV F , and RE ) are highly sensitive to the initial condi-
tion, i.e., initial soil ice content, on which the Nash-Sutcliffe efficiency is most sensitive.
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This is due to the short calibration period during which the effects of initial conditions
could not be eliminated.

5 Summary and conclusion

As stated by many researchers (Beven, 2002, 2006; Zehe and Sivapalan, 2007; Reg-
giani and Schellekens, 2003; Lee et al., 2007), the closure problem is one of the5

most crucial issues standing in the way of the REW approach becoming an alterna-
tive blueprint for distributed hydrological modeling. Although great progress has been
made in theoretical and applied aspects of the REW approach in recent years (Reg-
giani et al., 1998, 1999; Reggiani and Rientjes, 2005; Tian et al., 2006a, b; 2007; Lee
et al., 2007; Zhang et al., 2006), energy balance equations have been excluded in10

these applications. The development and testing of appropriate constitutive relation-
ships for processes occurring in cold regions continue to hamper its application to cold
and even temperate regions.

In this paper, within the extended framework of the REW approach provided by Tian
et al. (2006a), we proposed a set of closure schemes for cold region processes. These15

were classified into two different types, i.e., melting and accumulation of glacier/snow,
and freezing and thawing of soil water. A rigorous energy balance method has been
proposed to close the balance equations of melting/accumulation processes, along
with the conceptual degree-day method. The closure schemes for soil freezing and
thawing are based on the maximum unfrozen-water content model. We applied the20

proposed closure schemes to the headwaters of the Urumqi River and obtained very
promising results. The modeling shows

It should be noted that the constitutive relationships proposed in this paper are spec-
ified for cold regions processes, which may not occur throughout the year in all cold
regions. For example, in seasonally frozen areas soil may behaves as frozen soil in the25

cold season and as normal soil in the warm season, and for seasonally snow-covered
areas, snow cover accumulates during the cold season and melts and disappears dur-
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ing the warm season. The simulation of the switching pattern can be accomplished
by switching the closure schemes in different seasons, in which case the transition
between accumulation and melting should be modeled very carefully.

In our case study, the runoff contributed by glacier melting turned out to be the most
important component, and for this reason in this paper we focused on the melt pro-5

cesses of glacier and deal with the other processes in a relatively simpler manner.
Although the closure schemes developed in this paper will not prevent us to focus on
snow melt processes, more detailed analyses should be carried out to investigate snow
accumulation and redistribution, and the depletion for snow cover will become domi-
nant in most cold catchments. These difficult issues and the generalization of the REW10

framework to deal with these are left for future research.

Nomenclature

Latin symbols
anl Coefficient of daily snow melting
as Regression constant
bnl Coefficient of daily snow melting
bs Regression constant
B Coefficient of unfrozen water content model related to soil texture

c Density of solute in soil
[
molM−1

]
cINF Coefficient of infiltration
cgrn Coefficient of radiation of g-zone

cgT2 Coefficient of sensible heat flux of g-zone
cglg Coefficient of latent heat flux of g-zone

cnlg Coefficient of snow surface evaporation

cn Coefficient of unit transformation from [MJm−2day−1] to [kWm−2]
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cplcpicpa Specific heat of water, ice and air at a constant
pressure

[
ML−1T−2Θ−1

]
cu Averaged specific heat of u-zone

[
ML−1T−2Θ−1

]
dr Zero plane displacement [L]
dr Inverse relative distance Earth-Sun
Dgh , D

g
hn, D

g
hs, D

g
hu Turbulent transfer coefficient and its special form

under neutral, stable and unstable conditions re-
spectively

Du Averaged coefficient of thermal conductivity
[
MLT−3Θ−1

]
ea Actual vapor pressure

[
ML−1T 2

]
E0 Evaporation rate obtained from evaporation pan

[
LT−1

]
F The function of snow cover depletion

g Gravitational constant
[
LT−2

]
INF Cumulative infiltration volume [L]
IV F Water balance index
k1 Rain ratio when rain and snow happen together

K ss K
u
s Hydraulic conductivity in s-zone and u-zone re-

spectively

[
LT−1

]
llg, li l , lig Latent heat of vaporization, melting, and subli-

mation

[
L2T−2

]
l r Channel length [L]

mr Cross-section area of main channel
[
L2
]

nr , nt Manning’s n (r-zone), Manning’s n (t-zone)
n Total time steps of observed or simulated daily

discharge

3658

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/3627/2007/hessd-4-3627-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/3627/2007/hessd-4-3627-2007-discussion.html
http://www.egu.eu


HESSD
4, 3627–3686, 2007

Application of the
REW approach for

cold regions

L. Mou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

nsun Actual duration of sunshine [T ]
Nsun Maximum possible duration of sunshine or day-

light hours
[T ]

P The quantity of daily precipitation [L]
qa, qs Actual humidity and saturated humidity

QgT Heat exchange rate with atmosphere of g-zone
[
ML2T−3

]
Q
gT

1 Energy flux of g-zone accompanied with rainfall or
snowfall

[
ML2T−3

]
Q
gT

2 Sensible heat flux of g-zone
[
ML2T−3

]
Qoi , Qsi Observed or simulated daily discharge at the i th

step respectively

[
LT−3

]
rain The quantity of daily rainfall [L]
R2 Nash -Sutcliffe efficiency coefficient
RE relative error,
Ri Richardson number

Ra Daily extraterrestrial radiation
[
MT−3

]
Rgso Clear-sky radiation of g-zone

[
MT−3

]
Rgs Local surface solar radiation

[
MT−3

]
Rgnl Local net long-wave radiation

[
MT−3

]
Rgn Areal averaged net radiation intensity

[
MT−3

]
snow The quantity of daily snowfall [L]
Su0 , S

nu
0 , Svu0 , Sbu0 Soil surface saturation and its special form for in-

filtration from n-zone, v-zone and b-zone respec-
tively.
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SuI Initial moisture content
t0 Infiltration time [T ]
T0 Critical temperature of snow melting [Θ]
T1 Critical temperature of defining rain form [Θ]
T2 Critical temperature of defining snow form [Θ]
Ta Daily mean air temperature [Θ]
Ta,max Daily maximum absolute temperature [Θ]
Ta,min Daily minimum absolute temperature [Θ]

T gs Glacier surface temperature [Θ]

T u, T uK Averaged temperature of u-zone in degrees Celsius, Kelvin re-
spectively

[Θ]

u Wind speed
[
LT−1

]
wr Channel width [L]
Wa Snow water equivalent of n-zone [L]
Wa,max Maximum snow water equivalent of n-zone [L]
y j Depth of j -zone [L]
Z Depth of glacier and its covers (above ground surface) [L]
z′ Height of measured wind speed [L]

Greek symbols
αg Albedo of glacier surface
αice, αsnow Ice and snow surface albedo
εgn Snow ratio of glacier surface
εul , ε

u
i Soil liquid water content, ice content respectively.

εuc Soil field moisture capacity.
εuεs Soil porosity of u-zone and s-zone respectively

ρjα the time-averaged density of Bjα
[
ML−3

]
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ρjα the density of α phase at the differential volume dV in V jα space
[
ML−3

]
ϕ Latitude
ϕb Soil matrix potential of air entry [L]

σ Stefan-Boltzmann constant
[
MT−3Θ−4

]
µ Soil pore distribution index
κ Von Karman’s constant
δ Solar declination

Σ Horizontal projected Area of watershed
[
L2
]

γr , γt Slope of r-zone Slope of t-zone
ωs Sunset hour angle
ωj Time-averaged horizontal projected area ratio of j -zone

Subscripts and superscripts
B superscript indicating the impermeable strata or groundwater

reservoir
EXT superscript indicating the external world
i , j superscripts indicating sub-region, can be u(unsaturated

zone), s(saturated zone), r(main channel reach), t(sub-stream
network), b(bared soil zone), v(vegetation covered zone),
n(snow covered zone), g(glacier covered zone)

L superscript indicating the neighboring REW, L = 1..NK
P superscript indicating the wildcard indicating

EXT, L, T, B, i , L = 1..NK
T superscript indicating the atmosphere
α,β subscripts indicating the phase, can be m (soil matrix), l (liquid

water), a (gaseous phase), p (vapor), i (ice), n (snow), and v
(vegetation)
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Note: M is the dimension of mass, L is the dimension of length, T is the dimension
of time, and Θ is the dimension of temperature. mol is the dimension of mol.
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Table 1. Principle closure formulae in THModel (Tian et al., 2007; Lee et al., 2007).

No. Variable Note Constitutive relationship

1 ωt Area ratio of sub-
stream network zone

ωt =


0i f ys ≤ zr − zs

1

βω
t

1 +βω
t

2 e−β
ωt
3

(ys−Z+|ψb |)
− 1

βω
t

1 +βω
t

2 e−β
ωt
3

(zr−zs−Z+|ψb |)
i f zr − zs < ys < Z

1i f ys = Z

2 ebu, evu infiltration F j = min
[
Rωj , fiω

j
]
, j = b, vfi = K

u
s

[
1 + αIF L |ψ |(1−su)εu

suyu

]
3 eblg, e

v
lg Evaporation or transpi-

ration
ET j = min

{[
(1 −M)Ep +M (ETv )

]
ωj , feω

j
}
, j = b, v

fe = α
EF L K us

(1−su)yu
(su)2+dεu |ψb |

µ
4 eus Deep seepage or

phreatic evaporation
eus = αusεuωuvuz

5 etr Runoff from t-zone etr = αtrξry tv t

6 est Seepage from s-zone est = ωtαst1 K
s
s

αst2
[
yusuωu+ysωs

(yu+ys)|ψ |

]αst3

7 ψ Averaged soil matrix
potential of u-zone

ψu = ψbs
−αα defined by soil characteristic

8 K Averaged soil hydraulic
conductivity of u-zone

K u = K us s
β, β defined by soil characteristic
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Table 2. Total precipitation and mean temperature from May to August for 1990–1995 (exclud-
ing 1992).

Year precipitation (mm) Daily mean Notes
temperature(◦C)

1990 307.3 3.31 Dry, warm
1991 373.4 2.75 Wetter, warmer
1993 401.8 1.98 wet, cold
1994 435.3 3.10 wet, warm
1995 315.1 3.00 dry, warm
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Table 3. Physical parameters for THModel in cold regions.

Symbol Value Unit Symbol Value Unit

Σ 28.44 (km2) nr 0.03
ωt 0.01 nt 0.05

ωg 0.2 K us 3×10−7 (m/s)

ωv 0.3 K ss 3×10−7 (m/s)
l r 3000.3 (m) εu 0.55
wr 7 (m) εs 0.55
γr 8.61 (◦) µ 0.25
γt 43.35 (◦) ψb –0.55 (m)
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Table 4. Initial conditions for case study in headwaters of Urumqi River basin.

Symbol Value Unit

yn 0.75 (m)
yg 40 (m)
ys 6 (m)
y t 0 (m)
mr 0.1 (m2)
yu 2 (m)

T u -3 (◦C)
θul 0.1
θui 0.15∼0.35 ∗

The initial ice content is determined by averaged daily maximum air temperature from January
to April, illustrated in Fig. 7.
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Table 5. Calibrated parameters.

Symbol Value Symbol Value

T1 –1

anl

* 1.5
T2 –2 ** 1.3
cgrn 0.7 *** 0.4

cgT2 0.6 * 1

cgTlg 0.6 bnl ** 0.6

εgn

May 0.8 *** 0.5

June 0.6

T0

* 0.4
July 0.5 ** 0.5

August 0.4 *** 3

k1

May 0.1 Note
June 0.1 * Ta ≥ 3◦C
July 0.2 ** 3◦C > Ta≥0◦C

August 0.2 *** 0◦C>Ta≥−3◦C
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Table 6. Evaluation merits.

Year R2 IVF RE

1990 0.80 0.02 0.24
1991 0.77 –0.12 0.25
1993 0.64 0.073 0.34
1994 0.79 0.03 0.29
1995 0.73 –0.19 0.26

3672

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/3627/2007/hessd-4-3627-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/3627/2007/hessd-4-3627-2007-discussion.html
http://www.egu.eu


HESSD
4, 3627–3686, 2007

Application of the
REW approach for

cold regions

L. Mou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

 

 

 

 

 

 

 

impermeable strata

saturated zone

unsaturated zone

main channel reach

sub-stream 
network

vegetation covered 
zone

glacier covered zone snow covered zone

glacier

grass

tree

water table

water table

bared soil zone

lake

snow

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Definition of REW after Tian et al. (2006a).
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Fig. 2. Mass and energy exchange terms among sub-regions in cold regions.
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Fig. 3. Mass and energy exchange terms of snow covered zone.
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Fig. 4. The Urumqi River and its headwaters area.
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Fig. 5. Mean monthly precipitation and positive accumulated air temperature for headwaters of
Urumqi River (according to the data measured at Daxigou meteorological station from 1990 to
2002).
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Fig. 6. Relationship between ground surface temperature and difference between daily mean
air temperature and ground surface temperature.
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Fig. 7. Air temperature, precipitation and discharge in 1992.
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Fig. 8. Relationship between initial ice content and averaged daily maximum air temperature
from January to April.
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Fig. 9. Model calibration results (1) (a), (b), (c), and (d) are hydrographs for 1990, 1991, 1993;
and 1994.
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Fig. 10. Model calibration results (2) (a), (b), (c), and (d) are correlation curve between ob-
served and the simulated daily discharge for 1990, 1991, 1993, and 1994.
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Fig. 11. Model calibration results (3) (a), (b), (c), and (d) are daily water depth of glacier and
snow melting and precipitation for 1990, 1991, 1993, and 1994.
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Fig. 12. Model calibration results (4) (a), (b), (c), and (d) are daily SWE depletion/accumulation
curve with daily mean air temperature for 1990, 1991, 1993, and 1994.
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Fig. 13. Model calibration results (5) (a), (b), (c), and (d) are soil water, ice and temperature
dynamics for 1990, 1991, 1993, and 1994.

3685

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/3627/2007/hessd-4-3627-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/3627/2007/hessd-4-3627-2007-discussion.html
http://www.egu.eu


HESSD
4, 3627–3686, 2007

Application of the
REW approach for

cold regions

L. Mou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

 

 

 

 

 

0

1

2

3

4

5

0 1 2 3 4 5
Simulated discharge (m3/s)

O
bs

er
ve

d 
 d

is
ch

ar
ge

 (m
3 /s

)

discharge
1:1 line

 
a b 

0

10

20

30

40

50

60

1-May 1-Jun 1-Jul 1-Aug time (day)

w
at

er
 d

ep
th

 (m
m

)

precipitation
glacier melting
snowmelt

0

0.05

0.1

0.15

0.2

1-May 1-Jun 1-Jul 1-Aug

Time (day)
SW

E 
pe

r a
re

a(
m

)

-75

-45

-15

15

Te
m

pe
ra

tu
re

(o
C)

Daily mean air temperature

Snow water equivalent

c d 

0

0.1

0.2

0.3

0.4

1-May 1-Jun 1-Jul 1-Aug
Time (day)

So
il 

w
at

er
 / 

ic
e 

co
nt

en
t

268

270

272

274

A
ve

ra
ge

 te
m

pe
ra

tu
re

 (K
)

Soil water content
Soil ice content
Soil temperature

 

e  

 

Fig. 14. Model validation results a ∼ e are hydrographs, correlation between the observed
and simulated discharge, daily water depth of glacier and snow melting and precipitation over
the whole watershed, SWE change with daily mean air temperature and soil water, ice and
temperature’s change in 1995, respectively.
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